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Abstract. Kamperman and Walters proposed the notion of a simula-
tion of one rewrite system by another one, whereby each term of the
simulating rewrite system is related to a term in the original rewrite
system. In this paper it is shown that if such a simulation is sound and
complete and preserves termination, then the transformation of the ori-
ginal into the simulating rewrite system constitutes a correct step in the
compilation of the original rewrite system. That is, the normal forms of
a term in the original rewrite system can then be obtained by computing
the normal forms of a related term in the simulating rewrite system.

1 Introduction

Questions on the correctness of compilation of programming languages date back
to McCarthy [12]. In this paper we present a technique to deduce the correctness
of compilation steps for functional programming languages which stay inside the
domain of rewrite systems.

Quite a number of papers deal with particular examples of transformations
of rewrite systems, usually with the aim to obtain a rewrite system which sat-
isfies some desirable property, e.g. [17, 10, 18, 16, 19, 22, 7]. In most of these
papers, correctness of the transformation is stated, meaning that the original
and the transformed rewrite system are in some sense ‘equivalent’. This claim
is based on the observation either that desirable properties such as confluence
and termination are preserved by the transformation, or that the transformed
rewrite system can somehow simulate the original rewrite system, so that the
reduction graph of an original and a simulating term have the same structure.

Recently, Kamperman and Walters (7, 8, 6] proposed a notion of simulation of
one rewrite system by another rewrite system. A simulation basically consists of
a surjective mapping ¢ which relates each term in the simulating rewrite system
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to a term in the original rewrite system. A simulation should be sound, meaning
that if a term ¢ can be rewritten to a term ¢’ in one step in the simulating rewrite
system, then ¢(t) can be rewritten to ¢(t') in zero or more steps in the original
rewrite system. Furthermore, a simulation should be complete, meaning that if a
term ¢(t) can be rewritten to a term s in one step in the original rewrite system,
then t can be rewritten to t’ with ¢(t') = s in one or more steps in the simulating
rewrite system. Finally, a simulation should preserve termination, meaning that
if the original rewrite system is terminating for a term ¢(t), then the simulating
rewrite system should be terminating for ¢. (The other way around is guaranteed
by completeness.)

Kamperman and Walters apply simulation to transform a left-linear rewrite
system into a form which is more suitable for compilation, as a first step in
the implementation of their equational programming language EPIC [20, 21].
Kamperman and Walters state, for example in the title of [8], that if a simulation
is sound and complete and preserves termination, then it constitutes a correct
transformation of rewrite systems. However, they do not yet provide a foundation
for this claim. At first sight, the link between the original and the simulating
rewrite system is unclear. For example, in general the syntax of the original and
of the simulating rewrite system differ. Furthermore, the original rewrite system
may be confluent, while the simulating one is not. Hence, the question arises
what it means to state that such a transformation of rewrite systems is ‘correct’.

Although preservation of reduction graphs underlies simulation, reduction
graphs are usually not of interest in applications of rewrite systems. Especially
if a rewrite system is used to implement a functional language, then one is solely
interested in the input/output behaviour of the system, where the input is any
term, and the output is (one of) its normal form(s). So if a rewrite system is
transformed as part of a compilation project, then the main interest is that
the transformation preserves normal forms. We propose the notion of a correct
transformation of rewrite systems, based on ideas on compiler correctness by
Burstall and Landin [2] and Morris [13]. We say that the transformation of one
rewrite system into another is correct if no information on normal forms in the
original rewrite system is lost. That is, it should be possible to provide mappings
parse from original to transformed terms and print from transformed to original
terms such that for each original term ¢ its normal forms can be computed as
follows: compute the normal forms of parse(t), and apply the print function
to them. In order to make sure that the simulating rewrite system returns an
answer whenever the original rewrite system does, it is required that a correct
transformation also preserves termination properties.

We show that the notion of a simulation as proposed in [7, 8, 6] constitutes a
correct transformation, under the conditions that it is sound and complete and
preserves termination. Hence, the notion of simulation constitutes a useful tool
for proving correctness of compilation of rewrite systems. Namely, such a com-
pilation may involve a chain of transformations of rewrite systems. In order to
prove correctness of one such transformation, it is sufficient to find a simulation
relation that is sound, complete and termination preserving. The intuitive link
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between the two rewrite systems before and after a transformation can often
be materialized in an explicit simulation relation. Simulation and its properties
soundness, completeness and termination preservation are all conserved under
composition, so that it suffices to determine these properties for each consecutive
step of a transformation chain.

We will generalize and simplify existing simulation definitions considerably.
The proof of the correctness of simulation will use almost in full the criteria for
soundness and completeness and preservation of termination. One could there-
fore argue that these criteria were designed to satisfy the requirements of a
correct transformation implicitly.

In practical cases, a simulation is often not immediately sound, complete
and termination preserving, due to the fact that the simulating rewrite system
contains ‘junk’. In such cases, a reachability restriction on the elements in the
simulating rewrite system can help to make the simulation sound, complete and
termination preserving. We will formalize this reachability notion.

Related Work. In [4, 14], a transformation of an equational specification of
abstract data types is called a ‘correct implementation’ if the initial algebras
of the original and the transformed specification are isomorphic. This notion is
considerably stronger than our notion of a correct transformation.

Thatte [17, 18] defined a transformation of certain types of rewrite systems,
over a signature X, into rewrite systems that are constructor based, over an
extended signature £*. The relation between the original and the transformed
rewrite system, with the latter restricted to the part that is reachable from X, is
given by a mapping ¢ : £* — X, which is the identity on X. Since this mapping
is surjective, it is a simulation. Thatte shows that this simulation is sound, and
satisfies a weaker completeness notion: if a term s can be rewritten to a term s’
in one step in the original rewrite system, then s can be rewritten to s’ in zero
or more steps in the simulating rewrite system. This weaker completeness notion
(which was also used by Sekar et al. [16]) does not imply that a transformation
is correct.

Luttik [11] proposed a series of stronger simulation notions, and shows that
they preserve termination and confluence.

In the technical report version of this paper [5], more information is provided
on so-called ‘weak correctness’ of transformations, which basically means that
at least one normal form of each term in the original rewrite system is conserved
by the transformation.

Acknowledgements. Jasper Kamperman, Bas Luttik, Karen Stephenson and
Pum Walters are thanked for useful comments, and Jan Bergstra, for his support.
A considerable part of this research was carried out when both authors worked
at the Philosophy Department of Utrecht University.

2 Abstract Reduction Systems

This section introduces some preliminaries from rewriting [3, 9].
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Definition1. An abstract reduction system (ARS) consists of a collection A of
elements, together with a binary reduction relation R between elements in A.

R+ denotes the transitive closure of a reduction relation R, and R* the reflexive
transitive closure of R. In the following definitions, we assume an ARS (A4, R).

Definition 2. a € A is a normal form for R if there does not exist an a' € A
with aRa'. a € A is a normal form of a’ € A if ' R*a and a is a normal form.

nfg : A = P(A) maps each a € A to its collection of normal forms for R.

Definition 3. R is terminating for a € A if there does not exist an infinite
reduction aRaiRasR---. (This is also known as strong normalization.)

3 Correctness of Transformations

We formulate general conditions which ensure that a transformation of rewrite
systems is correct. We adopt the point of view that such a transformation is
correct if it constitutes a sensible step in a compilation procedure. This is the
case if the input/output behaviour of the original rewrite system is maintained,
where the input is any term, and the output is (one of) its normal form(s). Hence,
for compilation of rewrite systems, the prime interest of a transformation is that
it preserves normal forms.

We note that rewriting is mostly concerned with the computational aspect,
that is, a rewrite system is characterized by the normal forms that it attaches
to terms, together with its termination properties. Justifications of this claim
abound in the literature:

— equational theorem proving is mostly concerned with terminating rewrite
systems which yield unique normal forms [15];

— if rewriting is applied to implement abstract data types, then the meaning
of a term is fixed by its normal forms [1];

— in [3] it is remarked that “rewrite systems defining at most one normal form
for any input term can serve as functional programs”.

As explained in the introduction, we propose a notion of correctness of trans-
formations, which requires parse and print functions that allow the normal forms
of the original rewrite system to be computed via the simulating rewrite system.

In the following definition, we assume that a mapping f : V — W extends
to a mapping f : P(V) = P(W) as expected: f(Vo) = {f(v) | v € Vo}.

Definition4. An ARS (B, S) is a correct transformation of an ARS (A, R) if
there exist mappings parse : A — B and print : B — A such that:

1. if R is terminating for a € A, then S is terminating for parse(a);

2. print(nfs(parse(a))) = nfr(a) for a € A, that is, the diagram below com-
mutes:
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parse

nfr nfs

P(4) P(B)

print

For this notion of a correct transformation, the definition of the print function

outside of nfs(parse(A)), and the S-relation outside the range of parse, are
irrelevant.

4 Correctness of Simulation

4.1 Simulation

Kamperman and Walters [7, 8, 6] propose a notion of simulation for rewrite sys-
tems. We present simplified and more general versions of their definitions in the
next sections. A simulation of an ARS (4, R) by an ARS (B, S) is characterized
by a surjective mapping ¢ : B — A. The intuition for this mapping ¢ is that the
reduction graph of a € A with respect to R is simulated by the reduction graphs
of all b € ¢~!(a) with respect to S.

Definition 5. A simulation of an ARS (A, R) by an ARS (B, S) is a surjective
mapping ¢ : B — A.

Simulation is a transitive relation, simply because the composition of two sur-
jective mappings is again surjective.

4.2 Soundness

In this and the following sections we assume as general notation that the ARS
(4, R) is simulated by the ARS (B, S) by means of the surjective mapping ¢ :
B — A. Soundness of a simulation ensures that each S-step of b € B is a
simulation of some finite R-reduction of ¢(b).

Definition 6. The simulation ¢ is sound if for each b,b’ € B with bS¥ we have

$(b)R"(b').

Soundness can be depicted as follows:
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Let ¢ be a simulation of (4, R) by (B, S), and ¢' a simulation of (B, S) by (C,T).
_If both ¢ and ¢' are sound, then their composition ¢ o ¢' is also sound, which
can be seen from the following graphical outline.
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The first step is due to soundness of ¢', and the second to soundness of ¢, applied
to each step in the S*-reduction.

4.3 Completeness

As opposed to soundness, completeness ensures that each R-step from ¢(b) is
simulated by a finite S-reduction of b with length greater than zero. Note that,
due to the surjectivity of ¢, each a € A can be written as ¢(b) for some b.

Definition 7. The simulation ¢ is complete if for each a € A and b € B with
#(b)Ra there is a b’ € B with bSTY’ and ¢(b') = a.

Completeness can be depicted as follows:
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Let ¢ be a simulation of (4, R) by (B, S), and ¢' a simulation of (B, S) by (C,T).
If both ¢ and @' are complete, then their composition ¢ o ¢’ is also complete,
which can be seen from the following graphical outline.
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The first step is due to completeness of ¢, and the second to completeness of ¢,
applied to each step in the ST-reduction.

4.4 Termination Preservation

Termination preservation of a simulation ensures that termination properties for
the original rewrite system are preserved by the simulating rewrite system.

Definition 8. A simulation preserves termination if for each a € A for which R
is terminating, S is terminating for each b € ¢~1(a).

Let ¢ be a simulation of (4, R) by (B,S), and ¢' a simulation of (B, S) by
(C,T). If both ¢ and ¢' preserve termination, then their composition ¢ o ¢' also
preserves termination. Namely, suppose that R is terminating for a € A4, and let
¢ o ¢'(c) = a. Then termination preservation of ¢ yields that S is terminating
for ¢'(c), and termination preservation of ¢' yields that 7 is terminating for c.

4.5 Correctness

Theorem 9. If a simulation is sound and complete and preserves termination,
then it is a correct transformation.

Proof. Let ¢ be a simulation of (4, R) by (B, S) which is sound and complete
and preserves termination. Choose print to be ¢, and let parse be any inverse
of print (i.e., parse(a) € ¢~ (a) for each a € A). We show that these mappings
satisfy the requirements of a correct transformation.

First we prove print(nfs(parse(a))) C nfr(a) fora € A. Let b € nfs(parse(a));
we have to show that print(b) € nfg(a). Since parse(a)S*b, soundness yields
aR*print(b). Since b is a normal form for S, completeness implies that print(b)
is a normal form for R. So, since aR*print(b), it follows that print(b) € nfr(a).

Next we prove nfr(a) C print(nfs(parse(a))) for a € A. Let o' € nfr(a);
we show that o' € print(nfs(parse(a))). Since aR*a’, completeness yields that
there exists a b € B such that parse(a)S*b and print(b) = a'. Since o' is a
normal form for R, preservation of termination yields that S is terminating
for b. Hence, there exists a b € B which is a normal form for S such that
bS*V'. Since parse(a)S*bS*¥', it follows that b’ € nfs(parse(a)). Since bS*d’ and
print(b) = a', soundness yields o' R* print(b'). The fact that o’ is a normal form
for R then implies print(b') = a’. Hence, o' € print(nfs(parse(a))).

Finally, if R is terminating for a € A, then preservation of termination ensures
that S is terminating for parse(a). O
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4.6 Reachability

Definition 10. Let (B,S) be an ARS, and By C B. An element b € B is S-
reachable from By if beS*b for some by € Byg.

This reachability notion also occurs in [18, 19].

In practical cases, a simulation ¢ : B = A of an ARS (A4, R) by an ARS
(B,S) is not always immediately sound, complete and termination preserving,
due to the fact that B contains ‘junk’. In such cases, it may be possible to define
a collection By C B that is closed under S-reductions, such that ¢ restricted to
By is still surjective, and a sound, complete, termination preserving simulation.
A particular case arises when A itself is a subset of B. In that case, restricting
¢ to the S-reachable terms of A often does the job.

We note that such a restriction of a simulation never loses any desirable
properties. That is, let ¢ : B — A be a simulation of (4, R) by (B, S) that is
sound or complete or termination preserving. If the restriction of ¢ to a collec-
tion By C B, closed under S-reductions, is still surjective, then this restricted
simulation is still sound or complete or termination preserving, respectively.

5 An Example

We present a toy example of a transformation of a term rewriting system (TRS)
[3, 9], which will be shown to be a sound, complete and termination preserving
simulation, if a reachability restriction is imposed on the ARS induced by the
transformed TRS.

Assume two constants ¢ and ¢/, and two unary functions f and g, and let A
be the set of closed terms over the signature {c,¢, f,g}. Consider the TRS R
that consists of the following rewrite rule:

flgle)) — ¢

This rewrite rule induces an ARS on A, also denoted by R, in the standard
way. That is, a relation aRa' holds if @’ can be obtained from a by replacing a
subterm f(g(c)) of a by ¢'.

In order to compile (A, R), the TRS R can be transformed into a so-called
‘minimal’ TRS, using a strategy from [7, 8, 6]. In minimal TRSs, rewrite rules
are not allowed to contain more than three function symbols, and no more than
two function symbols at each side of the rewrite rule. These restrictions are con-
venient for compilation of the TRS, because matchings with respect to a minimal
rewrite system can easily be expressed in basic instructions of an abstract ma-
chine. Note that the rewrite rule in R is not minimal. The minimization strategy
transforms it into the following minimal TRS M:

f(9(z)) — fo(x)
f(z) — fx)
fole) — ¢

fo(@) — f4(g(z))
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These rewrite rules generate an ARS, also denoted by M, which applies to the
collection B of closed terms over the signature {c, ¢, f, f¢, f,, 9}- A relation bM b’
holds if b’ can be obtained from b by replacing a subterm by of b, which is an
instance of the left-hand side of a rewrite rule r in M, by the corresponding
instance of the right-hand side of 7. The rewriting strategy is innermost, which
requires that the proper subterms of by cannot be replaced. Furthermore, rewrite
rules are applied with respect to specificity ordering, which requires that the left-
hand side of 7 is the most specific of all left-hand sides of rules in M that match
with bg. Note that the left-hand side of the first and third rewrite rule in M are
more specific than the left-hand side of the second and fourth rule, respectively.

B contains two new unary function symbols, f¢ and fq- The intuition behind
the transformation, and the two new function symbols, is as follows. Basically,
the transformation splits possible matchings with respect to the left-hand side
of the rule in R into elementary steps. A term f,(b) is an encoded representation
of the term f(g(b)); this is captured by the first rewrite rule of M. Furthermore,
a term f4(b) is an encoded representation of the term f(b), and expresses that
this term cannot be rewritten by the rule in R. Therefore, the second rule of
M reduces f(b) to f4(b), if b is not of the form g(b') (due to the fact that the
first rule has priority over the second rule). The third rule mimics the rule in R,
because fy(c) represents f(g(c)). Finally, the fourth rule of M expresses that a
term f(g(b)) with b # ¢ cannot be rewritten by R, so that in M a term f,(b) is
reduced to f%(g(t)) if b # c (due to the fact that the third rule has priority over
the fourth rule).

In spite of the intuition presented above, it remains a natural question to ask
whether the transformation of R into M is correct. In order to give a positive
answer to this question, we capture this intuition by a simulation relation as
follows. Let By the set of elements in B that are M-reachable from A. Note that
A C By. We define a surjective mapping ¢ : By — A inductively as follows:

¢(c) =c d(f(t)) = f(o(2))
¢(c) =¢ ¢(£(t) = £(6(1)
¢(g9(t)) = g(¢(2)) b(f,(t)) = F(g((1)))

This simulation is sound and complete and preserves termination. Hence, ac-
cording to Theorem 9, the transformation of (4, R) into (Bg, M) is correct.

Completeness depends on the reachability restriction that was imposed on
By. For example, f%(g(c)) is a normal form for M, while ¢(f%(g(c))) = f(g(c))
is not a normal form for R. However, f¢(g(c)) is not in By, because it is not
M-reachable from A.
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A problem arises with the permutative conversions for existential quantifiers
in first order logic. Prawitz [8] gives an SN-proof using strong validity (SV). In
[7] an SN-proof is given based on strict functionals. The SV-predicate is defined
using a general inductive definition, hence the computational contents of Prawitz’
proof is not clear. Consequently, the two SN-proofs cannot be related with our
method.

The latter system, and also Gédel’s T, can be seen as instances of higher-
order term rewrite systems. In [6, 7] a method is given to use strict functionals in
termination proofs for such rewrite systems. The connection with computability
should help in finding strict functionals for such proofs. One could for example
extract functionals from a computability proof for a core system, and then change
them by hand to obtain termination of a richer system.

The connection between computability and functionals gives rise to the fol-
lowing questions: Are the functionals extracted from SN-proofs always strictly
monotonic? What are right notions of strict monotonicity for higher type sys-
tems? Can some “easy” classes of strictly monotonic functionals be identified?
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